Chiral Synthesis of (-)-Colletol Based on Palladium-Catalyzed Reductive Cleavage of Alkenyloxiranes with Formic Acid

Isao SHIMIZU* and Tetsuya OMURA

Department of Applied Chemistry, School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169

Total synthesis of (-)-colletol was achieved using palladium-catalyzed hydrogenolysis of optically active (E)-4,5-epoxy-2-alkenoates to (E)-5-hydroxy-2-alkenoates with formic acid as a key step for preparation of the intermediate hydroxy ester segments.

(-)-Colletol (1) is a 14-membered bismacrolactone isolated from the fermentathoin broth of *Colletotrichum capsici* in 1973 along with related bislactones, colletodiol, colletoketol, and colletallol. (1) Recently, Keck's group reported the first total synthesis of 1 involving stereoselelective addition of triphenylallystannane to an aldehyde mediated by a Lewis acid. (2) Herein we wish to report a synthesis of 1 by stereoselective construction of two optically active hydroxy ester segments 6 and 12 using palladium-catalyzed hydrogenolysis of optically active alkenyloxiranes (3) and macrolactonization by Yamaguchi-Yonemitsu method. (4)

Optically active hydroxy esters $\bf 6$ and $\bf 12$ were prepared from alkenyl oxiranes $\bf 5$ and $\bf 11$, respectively. Sharpless asymmetric epoxidation of (E)-2-buten-1-ol $\bf (3)^5$) followed by Swern oxidation and subsequent Horner-Emmons reaction gave the alkenyloxirane $\bf 5$. The epoxy group of $\bf 5$ was reduced selectively with formic acid in the presence of Pd₂(dba)₃CHCl₃-PPh₃ as a catalyst to give the optically active alcohol $\bf 6$ in 84% yield. Protection of the hydroxy group (TBDMSCl, 92%) and alkaline hydrolysis (3M KOH, 83%) gave the carboxylic acid $\bf 8$.

Scheme 2. (a) TBHP, $Ti(O^iPr)_4$, (-)-DET, CH_2Cl_2 , -25 °C, 55%; (b) (1) $(COCl)_2$, DMSO, Et_3N , CH_2Cl_2 , -78 °C; (2) $(EtO)_2P(O)CH_2CO_2Et$, NaH, THF, 34%, 2 steps; (c) 2.5 mol% $Pd_2(dba)_3CHCl_3$, 2 mol% Ph_3P , HCO_2H-Et_3N , dioxane, rt, 84%; (d) TBDMSCl, imidazole, 92%; (e) 3 M KOH, EtOH, 83% (1 M = 1 mol dm-3)

The other segment 13 was prepared from the hydroxy ester 7. Reduction of 7 (DIBAH, 93%) gave the allylic alcohol 9. By a similar procedure, the allylic alcohol 9 was converted into the hydroxy ester 12 via an optically active epoxy alcohol 10 and the alkenyloxirane 11 in 55% yield. The hydroxy group was protected with MOMCl and the TBDMS ether was deprotected with 1M HCl to give the ester 13 in 83% yield.

Scheme 3. (a) DIBAH, Et₂O, -78 °C, 93%; (b) TBHP, $Ti(O^iPr)_4$, (-)-DET, CH_2Cl_2 , -25 °C, 91%; (c) (1) (COCl)₂, DMSO, Et₃N, CH_2Cl_2 , -78 °C; (2) (EtO)₂P(O) CH_2CO_2Et , NaH, THF, 85%; (d) 2.5 mol% Pd_2 (dba)₃ $CHCl_3$, 2.3 mol% Ph_3P , HCO_2H-Et_3N , dioxane, 72%; (e) (1) MOMCl, Pr_2EtN , CH_2Cl_2 , 85%; (2) 1 M HCl, THF, 98%; (f) $CH_2=CHCH_2OH$, $CIBu_2Sn-CSnBu_2OH$, toluene, reflux, 93%; (g) (1) DCC, DMAP, Et_2O , 68%; (2) 1 M HCl, THF, 91%; (3) 2 mol% Pd_2 (dba)₃ $CHCl_3$, 24.5 mol% Ph_3P , Ph_3P

The ethyl ester 13 was converted into the allyl ester 14 prior to coupling with 8 by Otera method.⁶⁾ Esterification of 8 and 14 using DCC gave 15 in 68% yield. Deprotection of TBDMS ether and removal of allylic moiety with formic acid using palladium catalyst gave the hydroxy carboxylic acid 2 in 64% yield. Finally, lactonization of 2 was carried out using 2,6-dichlorobenzoyl chloride and subsequent deprotection of MOM group with TMSBr⁷⁾ gave (-)-18,9) in 60% yield from 2.

This synthetic method of hydroxy esters described in this paper provides a promising method for 1,3-polyols which are present in a number of polyene macrolide antibiotics. This research was finnancially supported by Grant-in-Aids for Scientific Research on Priority Areas (No. 05234228) from Ministry of Education, Science and Culture and the Asahi Glass Foundation for Industrial Technology.

References

- 1) J. MacMillan and T. J. Simpson, J. Chem. Soc., Perkin Trans. 1, 1973, 1487.
- 2) G. E. Keck and J. A. Murry, J. Org. Chem., 56, 6606 (1991).
- 3) M. Oshima, H. Yamazaki, I. Shimizu, M. Nisar, and J. Tsuji, J. Am. Chem. Soc., 111, 6280 (1989).
- 4) F. J. Dommerholt, L. Thijs, and B. Zwanenburg, *Tetrahedron Lett.*, 32, 1495 (1991); H. Tone, T. Nisi, Y. Oikawa, and O. Yonemitsu, *Chem. Pharm. Bull.*, 37, 1167 (1989).
- B. E. Rossiter, T. Katsuki, and K. B. Sharpless, J. Am. Chem. Soc., 103, 464 (1981); Y. Gao,
 R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune, and K. B. Sharpless, ibid., 109, 5765 (1987).
- 6) J. Otera, T. Yano, A. Kawabata, and H. Nozaki, Tetrahedron Lett., 21, 2383 (1986).
- 7) S. Hanessian, D. Delorme, and Y. Dufresne, Tetrahedron Lett., 25, 2515 (1984).
- 8) (-)-Colletol (1): $[\alpha]^{24}_{D}$ =-3.3° (c1.04, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.62-6.73 (m, 2H), 5.79 (d, J=15.0 Hz, 1H), 5.76 (d, J=15.4 Hz, 1H), 5.24 (m, 1H), 5.17 (m, 1H), 4.02 (m, 1H), 2.48-2.54 (m, 2H), 2.20-2.33 (m, 2H), 1.97 (ddd, J=2.93, 2.93, 15.75 Hz, 1H), 1.50 (ddd, J=2.93, 6.23, 15.76 Hz, 1H), 1.35 (d, J=6.59 Hz, 3H), 1.34 (d, J=6.60 Hz, 3H); HRMS (CI) Found : 269.1416. Calcd for $C_{14}H_{21}O_{5}$ (MH+) 269.1389.
- 9) The enantiomeric excess of (-)-1 was >99% confirmed by NMR after converting to its (+)- and (-)-MTPA esters.

(Received July 5, 1993)